\(\int \frac {\sqrt {a+b \sec (c+d x)}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\) [633]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 305 \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 \left (25 a^4-17 a^2 b^2-8 b^4\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{105 a^3 d \sqrt {a+b \sec (c+d x)}}+\frac {2 b \left (19 a^2+8 b^2\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{105 a^3 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{35 a d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (25 a^2-4 b^2\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{105 a^2 d \sqrt {\sec (c+d x)}} \]

[Out]

2/105*(25*a^4-17*a^2*b^2-8*b^4)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2
^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/a^3/d/(a+b*sec(d*x+c))^(1/2)+2/7*sin(d
*x+c)*(a+b*sec(d*x+c))^(1/2)/d/sec(d*x+c)^(5/2)+2/35*b*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/a/d/sec(d*x+c)^(3/2)+
2/105*(25*a^2-4*b^2)*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/a^2/d/sec(d*x+c)^(1/2)+2/105*b*(19*a^2+8*b^2)*(cos(1/2*
d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*(a+b*sec(d*x+c))^
(1/2)/a^3/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 1.02 (sec) , antiderivative size = 305, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3942, 4189, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 \left (25 a^2-4 b^2\right ) \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{105 a^2 d \sqrt {\sec (c+d x)}}+\frac {2 b \left (19 a^2+8 b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{105 a^3 d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 \left (25 a^4-17 a^2 b^2-8 b^4\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{105 a^3 d \sqrt {a+b \sec (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{35 a d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{7 d \sec ^{\frac {5}{2}}(c+d x)} \]

[In]

Int[Sqrt[a + b*Sec[c + d*x]]/Sec[c + d*x]^(7/2),x]

[Out]

(2*(25*a^4 - 17*a^2*b^2 - 8*b^4)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt
[Sec[c + d*x]])/(105*a^3*d*Sqrt[a + b*Sec[c + d*x]]) + (2*b*(19*a^2 + 8*b^2)*EllipticE[(c + d*x)/2, (2*a)/(a +
 b)]*Sqrt[a + b*Sec[c + d*x]])/(105*a^3*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) + (2*Sqrt[a +
 b*Sec[c + d*x]]*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (2*b*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(35*a*d*
Sec[c + d*x]^(3/2)) + (2*(25*a^2 - 4*b^2)*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(105*a^2*d*Sqrt[Sec[c + d*x]]
)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3942

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[Cot[e +
 f*x]*Sqrt[a + b*Csc[e + f*x]]*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[1/(2*d*n), Int[(d*Csc[e + f*x])^(n + 1)*(
Simp[b - 2*a*(n + 1)*Csc[e + f*x] - b*(2*n + 3)*Csc[e + f*x]^2, x]/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[
{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1] && IntegerQ[2*n]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4189

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1
)*((d*Csc[e + f*x])^n/(a*f*n)), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {1}{7} \int \frac {b+5 a \sec (c+d x)+4 b \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{35 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2 \int \frac {\frac {1}{2} \left (-25 a^2+4 b^2\right )-\frac {23}{2} a b \sec (c+d x)-b^2 \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx}{35 a} \\ & = \frac {2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{35 a d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (25 a^2-4 b^2\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{105 a^2 d \sqrt {\sec (c+d x)}}+\frac {4 \int \frac {\frac {1}{4} b \left (19 a^2+8 b^2\right )+\frac {1}{4} a \left (25 a^2+2 b^2\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{105 a^2} \\ & = \frac {2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{35 a d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (25 a^2-4 b^2\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{105 a^2 d \sqrt {\sec (c+d x)}}+\frac {\left (b \left (19 a^2+8 b^2\right )\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{105 a^3}+\frac {\left (25 a^4-17 a^2 b^2-8 b^4\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{105 a^3} \\ & = \frac {2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{35 a d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (25 a^2-4 b^2\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{105 a^2 d \sqrt {\sec (c+d x)}}+\frac {\left (\left (25 a^4-17 a^2 b^2-8 b^4\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{105 a^3 \sqrt {a+b \sec (c+d x)}}+\frac {\left (b \left (19 a^2+8 b^2\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{105 a^3 \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \\ & = \frac {2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{35 a d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (25 a^2-4 b^2\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{105 a^2 d \sqrt {\sec (c+d x)}}+\frac {\left (\left (25 a^4-17 a^2 b^2-8 b^4\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{105 a^3 \sqrt {a+b \sec (c+d x)}}+\frac {\left (b \left (19 a^2+8 b^2\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{105 a^3 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}} \\ & = \frac {2 \left (25 a^4-17 a^2 b^2-8 b^4\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{105 a^3 d \sqrt {a+b \sec (c+d x)}}+\frac {2 b \left (19 a^2+8 b^2\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{105 a^3 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{35 a d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (25 a^2-4 b^2\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{105 a^2 d \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.19 (sec) , antiderivative size = 237, normalized size of antiderivative = 0.78 \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {\sqrt {a+b \sec (c+d x)} \left (8 b \left (19 a^3+19 a^2 b+8 a b^2+8 b^3\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )+8 \left (25 a^4-17 a^2 b^2-8 b^4\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )+2 a \left (136 a^2 b-16 b^3+a \left (145 a^2-4 b^2\right ) \cos (c+d x)+36 a^2 b \cos (2 (c+d x))+15 a^3 \cos (3 (c+d x))\right ) \sin (c+d x)\right )}{420 a^3 d (b+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \]

[In]

Integrate[Sqrt[a + b*Sec[c + d*x]]/Sec[c + d*x]^(7/2),x]

[Out]

(Sqrt[a + b*Sec[c + d*x]]*(8*b*(19*a^3 + 19*a^2*b + 8*a*b^2 + 8*b^3)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Ellipt
icE[(c + d*x)/2, (2*a)/(a + b)] + 8*(25*a^4 - 17*a^2*b^2 - 8*b^4)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF
[(c + d*x)/2, (2*a)/(a + b)] + 2*a*(136*a^2*b - 16*b^3 + a*(145*a^2 - 4*b^2)*Cos[c + d*x] + 36*a^2*b*Cos[2*(c
+ d*x)] + 15*a^3*Cos[3*(c + d*x)])*Sin[c + d*x]))/(420*a^3*d*(b + a*Cos[c + d*x])*Sqrt[Sec[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2763\) vs. \(2(329)=658\).

Time = 7.64 (sec) , antiderivative size = 2764, normalized size of antiderivative = 9.06

method result size
default \(\text {Expression too large to display}\) \(2764\)

[In]

int((a+b*sec(d*x+c))^(1/2)/sec(d*x+c)^(7/2),x,method=_RETURNVERBOSE)

[Out]

-2/105/d/a^3/((a-b)/(a+b))^(1/2)*(-19*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/
2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^3*b*cos(d*x+c)^2-16*EllipticE((
(a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/
2)*(1/(cos(d*x+c)+1))^(1/2)*b^4*cos(d*x+c)+2*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-
b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^2*b^2*cos(d*x+c)^2-8*((a
-b)/(a+b))^(1/2)*b^4*sin(d*x+c)-8*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*
(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a*b^3*cos(d*x+c)^2+19*EllipticE(((a-b
)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(
1/(cos(d*x+c)+1))^(1/2)*a^3*b*cos(d*x+c)^2-19*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a
-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^2*b^2*cos(d*x+c)^2+8*El
lipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c
)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a*b^3*cos(d*x+c)^2-38*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c
)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^3*b*cos(d*
x+c)+4*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(
cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^2*b^2*cos(d*x+c)-16*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-
csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a*b
^3*cos(d*x+c)+38*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos
(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^3*b*cos(d*x+c)-38*EllipticE(((a-b)/(a+b))^(1/2)*(cot
(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(
1/2)*a^2*b^2*cos(d*x+c)+16*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b
)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a*b^3*cos(d*x+c)-19*(1/(a+b)*(b+a*cos(d*x+c)
)/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*
x+c)+1))^(1/2)*a^3*b+2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+
c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*a^2*b^2-8*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+
1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)
*a*b^3+19*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)
),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*a^3*b-19*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Elli
pticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*a^2*b^2+8*(1/
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-
b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*a*b^3-44*((a-b)/(a+b))^(1/2)*a^3*b*cos(d*x+c)*sin(d*x+c)+((a-b)/(a+b))^(1/
2)*a^2*b^2*cos(d*x+c)*sin(d*x+c)-4*((a-b)/(a+b))^(1/2)*a*b^3*cos(d*x+c)*sin(d*x+c)-18*((a-b)/(a+b))^(1/2)*a^3*
b*cos(d*x+c)^3*sin(d*x+c)-18*((a-b)/(a+b))^(1/2)*a^3*b*cos(d*x+c)^2*sin(d*x+c)+((a-b)/(a+b))^(1/2)*a^2*b^2*cos
(d*x+c)^2*sin(d*x+c)+25*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(
b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^4*cos(d*x+c)^2-8*EllipticE(((a-b)/(a+b))^(1/2
)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)
+1))^(1/2)*b^4*cos(d*x+c)^2+50*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^4*cos(d*x+c)-25*((a-b)/(a+b))^(1/2)*a^
4*cos(d*x+c)^2*sin(d*x+c)-25*((a-b)/(a+b))^(1/2)*a^4*cos(d*x+c)*sin(d*x+c)+25*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d
*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))
^(1/2)*a^4-8*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x
+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*b^4-25*((a-b)/(a+b))^(1/2)*a^3*b*sin(d*x+c)-19*((a-b)/(a+b
))^(1/2)*a^2*b^2*sin(d*x+c)+4*((a-b)/(a+b))^(1/2)*a*b^3*sin(d*x+c)-15*((a-b)/(a+b))^(1/2)*a^4*cos(d*x+c)^4*sin
(d*x+c)-15*((a-b)/(a+b))^(1/2)*a^4*cos(d*x+c)^3*sin(d*x+c))*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/sec(d*x+c)
^(1/2)/(cos(d*x+c)+1)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 501, normalized size of antiderivative = 1.64 \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {\sqrt {2} {\left (-75 i \, a^{4} + 32 i \, a^{2} b^{2} + 16 i \, b^{4}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + \sqrt {2} {\left (75 i \, a^{4} - 32 i \, a^{2} b^{2} - 16 i \, b^{4}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) - 3 \, \sqrt {2} {\left (-19 i \, a^{3} b - 8 i \, a b^{3}\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) - 3 \, \sqrt {2} {\left (19 i \, a^{3} b + 8 i \, a b^{3}\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) + \frac {6 \, {\left (15 \, a^{4} \cos \left (d x + c\right )^{3} + 3 \, a^{3} b \cos \left (d x + c\right )^{2} + {\left (25 \, a^{4} - 4 \, a^{2} b^{2}\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{315 \, a^{4} d} \]

[In]

integrate((a+b*sec(d*x+c))^(1/2)/sec(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

1/315*(sqrt(2)*(-75*I*a^4 + 32*I*a^2*b^2 + 16*I*b^4)*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/2
7*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a) + sqrt(2)*(75*I*a^4 - 32*I*a^2*b
^2 - 16*I*b^4)*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(
d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a) - 3*sqrt(2)*(-19*I*a^3*b - 8*I*a*b^3)*sqrt(a)*weierstrassZeta(-4/3*(3*
a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*
b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a)) - 3*sqrt(2)*(19*I*a^3*b + 8*I*a*b^3)*sqrt(a)*w
eierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/
a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a)) + 6*(15*a^4*cos(d*x + c
)^3 + 3*a^3*b*cos(d*x + c)^2 + (25*a^4 - 4*a^2*b^2)*cos(d*x + c))*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*sin(
d*x + c)/sqrt(cos(d*x + c)))/(a^4*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+b*sec(d*x+c))**(1/2)/sec(d*x+c)**(7/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {\sqrt {b \sec \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(1/2)/sec(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(d*x + c) + a)/sec(d*x + c)^(7/2), x)

Giac [F]

\[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {\sqrt {b \sec \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(1/2)/sec(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(d*x + c) + a)/sec(d*x + c)^(7/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\int \frac {\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}} \,d x \]

[In]

int((a + b/cos(c + d*x))^(1/2)/(1/cos(c + d*x))^(7/2),x)

[Out]

int((a + b/cos(c + d*x))^(1/2)/(1/cos(c + d*x))^(7/2), x)